求解延迟微分方程块θ-方法的GPL_m-稳定性(英文)  被引量:1

GPL_m–Stability of Block θ–method for Delay Differential Equation

在线阅读下载全文

作  者:丛玉豪[1] 李顺道[1] 谭秀丽[1] 

机构地区:[1]上海师范大学数学系

出  处:《系统仿真学报》2007年第17期3937-3939,共3页Journal of System Simulation

基  金:E-Institutes of Shanghai Municipal Education Commission (E03004);Shanghai Municipal Education Commission (04DB07, 07ZZ64);Shanghai Science and Technology Committee (03QA14036);The Special Funds for Major Specialties of Shanghai Education Committee NSFC(1067130)

摘  要:讨论了带有多个滞时量的延时微分方程的数值稳定性,分析了用块θ–方法求解多延迟微分方程GPm–稳定和GPLm–稳定的条件,基于Lagrange插值,证明了块θ–方法GPm–稳定的充分必要条件是方法是A-稳定的,块θ–方法GPLm–稳定的充分必要条件是θ=1。The stability behavior of numerical solution for delay differential equations with many delays was studied. The conditions of GPmstability and GPLmstability of block θ-method for delay differential equations with many delays were discussed. By Lagrange Interpolation, it is shown that block θ-method is GPm-stable if and only if it is A-stable, block-θ method is GPLm-stable if and only if θ= 1.

关 键 词:延时微分方程 数值稳定性 θ-良方法 L-稳定性 

分 类 号:O241.8[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象