C-SVM在不同类别样本数目不均衡下的优化  被引量:3

Optimization of C-SVM in case of samples with unequal numbers in their different varieties

在线阅读下载全文

作  者:张秋余[1] 赵付清[1] 王静[1] 余冬梅[1] 李建建[1] 张润花 

机构地区:[1]兰州理工大学计算机与通信学院,甘肃兰州730050 [2]甘肃建筑职业技术学院,甘肃兰州730050

出  处:《兰州理工大学学报》2007年第4期90-92,共3页Journal of Lanzhou University of Technology

基  金:甘肃省科技攻关项目(2GS047-A52-002-03)

摘  要:在解决故障检测等分类问题时,若不同类别样本数目相差很大,C-SVM训练的分类错误总偏向于样本数较少的类别,因而影响了分类的精确性.为提高精确性,提出一种优化算法,在训练过程中针对不同类样本,采用不同的权值来优化训练过程,按正负类样本在总样本中所占的比例,加大样本数较少的类别权值,降低样本数较大的类别权值来实现两类样本间的均衡.实验结果表明,该方法对两类样本数目相差很大的问题有效.In solving the problem of trouble-locating in the case of samples with great difference in their number for their different varieties, the training with C-SVM was undesirably under bias towards those varieties with fewer samples, so that the training accuracy was unsatisfactory. In order to improve its accuracy,an optimization algorithm was proposed based on taking different weights for different classes in the process of training. According to the proportion of positive and negative samples in the total samples, the weight for the minor variety with fewer numbers of samples was increased and the other decreased, so that the balance between two samples varieties was realized. It was showed by experiments that the proposed approach could improve the accuracy of classification.

关 键 词:C-SVM 不均衡样本数 参数优化 加权 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象