代数整数环的素元及剩余类环  

The elements of the algebra integer ring——Z[ω]and the remaining kinds rings

在线阅读下载全文

作  者:伍军[1] 于萍[2] 

机构地区:[1]新疆师范大学初等教育学院,新疆乌鲁木齐830013 [2]西安文理学院,陕西西安710065

出  处:《新疆师范大学学报(自然科学版)》2007年第3期48-50,共3页Journal of Xinjiang Normal University(Natural Sciences Edition)

摘  要:作为抽象代数中环理论的两个重要环Z[i]与Z[ω],常以特例的形式散见于抽象代数教材中,对其系统的讨论不多见.而这两个环不仅是抽象代数中的重要实例,而且它们的性质是数论中相关理论的重要基础,特别是Z[ω]在解决费马问题n=3的情形时发挥了关键的作用.文章较为系统的讨论了整环Z[ω],确定了Z[ω]中的素元及其剩余类环所含元素的个数,由此得到数论中一个与Fermat小定理类似的结果。As two important rings in abstractive algebra, Z[i] and Z[ω] are usually scattered in textbooks as special examples. There is little systematical research on them. t towever, they are not only im- portant real instances in abstractive algebra, at the same time, they are important basis for some concerning theories in count view. The Z[ω]ring plays a key in solving Fei Ma. N = 3. In this article, the author tries to systematically discuss the elements of the integer ring Z[ω], and how many elements are there for its remaining kinds of rings. In this way, the author got a similar theorem with Fermat in count view.

关 键 词:素元 有理素数 剩余类环 

分 类 号:O153.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象