检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:栾翠菊[1] 宋广华[2] 郑耀[2] 张继发[2]
机构地区:[1]上海海事大学信息工程学院,上海200135 [2]浙江大学工程与科学计算研究中心,浙江杭州310027
出 处:《计算机集成制造系统》2007年第9期1805-1810,共6页Computer Integrated Manufacturing Systems
基 金:国家杰出青年基金资助项目(60225009)~~
摘 要:广泛研究了网格环境中并行任务执行时间的预测方法,提出了一种基于案例和人工神经网络的预测算法。该算法充分利用了历史有效信息,尤其是对于同一个任务的多次求解而获得的相似记录,通过建立任务特征模板,将历史任务,即案例进行分类,并利用指数平均值或者线性回归方法进行预测。但是由于网格环境的复杂性,以及有限元求解器在求解问题时的复杂性,导致相似性很难定义,在无法根据模板找到相似性案例的时候,利用人工神经网络预测方法进行预测。该算法在面向多学科应用的模拟与可视化环境中进行了实验,证明该方法具有较好的预测性能。Extensive studies on predicting the run-time of parallel jobs in the grid environment were conducted, and a Case and Back Propagation (BP) neural network based Prediction (CBPP) algorithm was proposed. The CBPP algorithm made full use of valid history information, especially similar run-time records for the same job. By constructing the template of job characteristics, history jobs or cases were classified, and then the run time was predicted by exponential average or linear regression method. Because of the complexity of the grid environment and the parallel jobs, it was difficult to define the similarity. The neural network was used to predict the run-time when there were no similar cases in the template library. Experimental results in the Multidisciplinary ApplicationS-oriented Simulation and Visualization Environment (MASSIVE) showed that the CBPP algorithm had satisfactory prediction performance.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222