图K_(r,s)-E(rK_2)的(模,整)和数  

(Mod,Integral) Sum Number of K_(r,s)-E(rK_2)

在线阅读下载全文

作  者:李爱芹[1] 王海棠[1] 

机构地区:[1]山东交通学院数理系,济南250023

出  处:《科学技术与工程》2007年第20期5199-5203,5212,共6页Science Technology and Engineering

摘  要:令N(Z)表示正整数(整数)集,N(Z)的非空有限子集S的和图G+(S)是图(S,E),其中uv∈E当且仅当u+v∈S;一个图G称为(整)和图,若它同构于某个SN(Z)的和图,(整)和数σ(G)(ζ(G))是使得G∪nK1是(整)和图的非负整数n的最小值。模和图是取SZm\{0}且所有算术运算均取模m(≥│S│+1)的和图。一个图G的模和数ρ(G)是使得G∪ρK1是模和图的孤立点数ρ的最小值。对图Kr,s-E(rK2)(s>r≥4且s≥6)。研究了它的(模,整)和数,文中确定了图K4,5-E(4K2)的(模,整)和数。Let N(Z) denote the set of all positive integers ( integers), the sum graph G ^+ (S) of a nonempty finite subset S N(Z) is the graph (S,E) with uv ∈ E if and only ifu + v ∈S. A graph G is said to be an (integral) sum graph if it is isomorphic to the sum graph of some S N(Z) . The (integral) sum number σ'(G) ( ζ(G) )is the smallest number of isolated vertices which added to G result in an (integral) sum graph. A mod sum graph is a sum graph with S C Zm / { 0 } and all arithmetic performed modulo m where m ≥| S | + 1 . The mod sum numberp(G) of G is the least numberp of isolated verticespK1 such that G ∪ ρK, is a mod sum graph, the (integral, mod )sum number of graphKr,s - E(rK=) ( s 〉 r ≥ 4,s ≥ 6 ), and the (integral, mod )sum number of graph K4.5 - E(4K2 ) are discussed.

关 键 词:(模 整)和图 (模 整)和数 (模 整)和标号 图Kr s-E(rK2) 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象