大规模数据集下支持向量机训练样本的缩减策略  被引量:13

Sample Reduction Strategy for Support Vector Machines with Large-Scale Data Set

在线阅读下载全文

作  者:罗瑜[1] 易文德[2] 王丹琛 何大可[1] 

机构地区:[1]西南交通大学信息科学与技术学院,成都610031 [2]重庆文理学院数学与计算机科学系,永川402160 [3]四川省信息安全测评中心,成都610017

出  处:《计算机科学》2007年第10期211-213,共3页Computer Science

基  金:上海市特种光纤重点实验室科研项目;地铁CBTC无线接入安全认证算法研究。

摘  要:大量数据下支持向量机的训练算法是SVM研究的一个重要方向和焦点。该文从分析SVM训练的问题的实质和难点出发,提出一种在训练前先求出类别质心,去除非支持向量对应的样本,从而达到缩小样本集的方法。该方法在不损失分类正确率的情况下具有更快的收敛速度,并从空间几何上解释了支持向量机的原理。仿真实验证明了该方法的可行性和有效性。Training algorithm for large-scale support vector rnachines(SVM) is an important and active subject in the field of SVM research. After the analysis of the nature and difficulties in training SVM, a new reduction strategy is proposed in this paper for training svm with large-scale sample set. In general, class centroid is solved before training and removing the samples corresponding to non support vectors. Through this method, the number of samples is reduced before training svm. This method is fast in convergence without accurate loss and propose the explanation of SVM theory from space geometry. The results of simulation experiments show the feasibility and effectiveness of this method.

关 键 词:支持向量机 分解算法 类别质心 准支持向量 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象