用模糊神经网络模型评估电能质量  被引量:73

Evaluation of Power Quality by Fuzzy Artificial Neural Network

在线阅读下载全文

作  者:周林[1] 栗秋华[1] 刘华勇 张凤[1] 屈涌杰 

机构地区:[1]重庆大学高电压与电工新技术教育部重点实验室,重庆400044 [2]重庆电力科学试验研究院,重庆400015 [3]重庆市电子职业技术学院,重庆400021

出  处:《高电压技术》2007年第9期66-69,共4页High Voltage Engineering

基  金:重庆市自然科学基金(2006BB6219)~~

摘  要:为了综合量化评估各种电能质量,实现按质论价、优质优价的购电原则,建立公平的电力市场,提出了结合人工神经网络和模糊识别理论,构造出模糊神经识别网络;根据电能质量评估的实质,构建了电能质量综合评估的模糊神经网络模型。研究表明,模型提高了识别系统的柔性处理能力,具有很强的自组织、自学习和自适应能力,可以使输出结果唯一、客观;模型不仅可确定电能质量的等级,还能评估某一等级的电能质量,从而识别同一等级电能质量的差异,分类能力和排序能力较强;模型引入隶属度概念,使评估结果更加具体。实例计算结果表明,模糊神经网络模型用于电能质量综合评估,其评估结果更为客观、合理。To evaluate the power quality properly to deal with the problem of power quality reasonably and economically, the fuzzy neural network recognition which combining NN and FR was put forward for power quality evaluation, then the Fuzzy Neural Network Recognition model (FNNR)was established. This model not only calculates the power quality grade of the observation station, but also compares the differences between observation stations in the same grade. Fuzzy Neural Network Recognition simulates the thinking of the brain, and has very strong self-organizing, selfilearning, self-adapting ability. The model proposed in this paper has essential differences with the actual power quality integrate-evaluating methods; the output result of the model has the characteristic of sole result and objectivity, etc. Case results show that the proposed model is objective and reasonable with a special advantage used in power quality evaluation.

关 键 词:电能质量 电力市场 综合评估 模糊神经网络 插值 隶属度 

分 类 号:TM743[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象