检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄玉萍[1] 王波[1] 邓兆虎[1] 张燕琴[1] 阮锋[1]
机构地区:[1]华南理工大学机械工程学院,广东广州510640
出 处:《锻压技术》2007年第5期138-141,共4页Forging & Stamping Technology
基 金:广东省工业攻关计划项目(2004A11403002)
摘 要:传统的冲压模具设计中,拉延筋设计和布置主要依靠经验,这使得模具设计和制造周期延长。以某汽车侧壁外板的拉深工序为例,讨论了神经网络技术与遗传算法在拉延筋优化设计中的综合应用问题。建立了反映板料成形参数与拉延筋阻力之间非线性映射关系的BP网络模型。利用该训练好的神经网络可以实现拉延筋的优化设计。由于相对于进行工艺试验来说数值仿真比较省时省力,因此,利用Dynaform模拟汽车侧壁外板的拉深成形过程,建立训练样本。在网络的训练方法上利用遗传算法进行了优化,有效地提高了神经网络的模拟精度。In traditional process, the design and arrangement of drawbeads largely depend on experience, which makes the designing and manufacturing period of die set to be prolonged. The application of ANN and GA in drawbead optimized design was discussed. A neural network model based on car sidewall drawing was designed to simulate the nonlinear mapping relation between the drawbead force and sheet forming parameters. The drawbead optimized design could be realized by using the ANN. Because the finite element simulation costed less time than process test, the car sidewall drawing process with Dynaform was simulated and the training sample of ANN was created. The training method of the ANN was optimized in GA. It was helpful to improving the simulating degree of ANN.
分 类 号:TG386.32[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30