基于人工神经网络的膨胀土判别分类方法:以宁连一级公路为例  被引量:8

METHOD FOR EXPANSIVE SOIL CLASSIFICATION BASED ON THE ARTIFICIAL NEURAL NETWORK EXEMPLIFIED BY NING LIAN HIGHWAY

在线阅读下载全文

作  者:杜延军[1] 

机构地区:[1]南京大学地球科学系

出  处:《高校地质学报》1997年第2期222-225,共4页Geological Journal of China Universities

摘  要:以往用于膨胀土判别分类的定量手段,如模糊数学、灰色聚类法等都或多或少带有一定的人为因素,不可避免的影响了分类结果。本文提出了一种膨胀土判别分类的新方法—BP神经网络模型,较好的弥补了这方面的缺点,并具有容错能力强、客观性好等特点。研究表明,这种方法在实践中是合理的、可行的。Previous quantitative methods for classifying expansive soil such as “Fuzzy” and “Grey Cluster Analysis” have certain shortcomings.Both of them rely on artificial factors and thus may influent the true results of the soil classification.A new method of Artificial Neural Network(ANN) model presented in the paper can well solve the difficulties and it has good objectivity and excellent disturbance resistance.The model is applied for classifying soil samples of D section in Ning Lian high grade highway.The results are well in accord with those by “Fuzzy” and “Grey Cluster Analysis” methods.The ANN method has been approved available and reasonable in practice and may become an effective way on determining expansive soil's properties quantitatively.

关 键 词:膨胀土 判别分类 人工神经网络 粘土矿物 

分 类 号:P578.94[天文地球—矿物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象