检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:居红云[1] 张俊本[1] 李朝峰[1] 王正友[2]
机构地区:[1]江南大学信息工程学院,江苏无锡214122 [2]江西财经大学信息管理学院,南昌330013
出 处:《计算机应用研究》2007年第11期318-320,共3页Application Research of Computers
基 金:教育部人文社科规划资助项目(05JA630024)
摘 要:遥感图像分类方法通常采用监督的学习算法,它需要人工选取训练样本,比较繁琐,而且有时很难得到;而非监督学习算法的分类精度通常很难令人满意。针对这些缺陷,提出一种基于K-means与支持向量机(SVM)结合的遥感图像全自动分类方法。首先使用K-means聚类算法对样本进行初始聚类,根据每类中样本数及其稀疏程度选取一些点作为标记的学习样本训练SVM分类器,然后用SVM对原始数据重新分类。Iris数据和遥感数据的实验结果均验证了新方法的有效性。The supervised learning algorithm was usually used for remote sensing image classification, but its training samples need to be chosen by manual, which was boring and sometimes even difficult. However, in unsupervised learning algorithm classification result was often not satisfactory. According to these limitations, an automated remote sensing image classification method of combining K-means algorithm with SVM. In new method, at first K-means algorithm was used to cluster original data points, and then according to the number and sparse degree of points in each class, some points as labeled samples were chosen to train SVM, at last SVM was utilized to reclassify original data points. Experimental results for Iris data and remote sensing data verify the validity of the proposed method.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15