基于人工免疫的故障诊断模型及其应用  被引量:10

Faults diagnosis model based on artificial immunity and its application

在线阅读下载全文

作  者:陈强[1] 郑德玲[1] 李湘萍[2] 

机构地区:[1]北京科技大学信息工程学院 [2]江西理工大学继教学院,赣州341000

出  处:《北京科技大学学报》2007年第10期1041-1045,共5页Journal of University of Science and Technology Beijing

基  金:高等学校博士学科点专项基金资助项目(No20020008004)

摘  要:提出了一种基于免疫原理的故障检测及诊断系统模型.通过对检测对象正常工作状态下获得的自己模式串的阴性选择,随机产生初始检测器;利用基于人工免疫的进化学习机制,实现对检测对象异常工作状态下获得的非己模式串进行学习和记忆;利用进化学习结果和系统故障信息库知识,区分和标记不同故障在状态空间上对应的区域.将抗原学习过程中抗体集合变异所产生的各代抗体集合看作随机序列,给出了序列的收敛条件及证明,证明了所提出的动态免疫进化学习算法是概率弱收敛.应用于机床齿轮箱故障检测和诊断问题的实验结果表明了所提出方法的有效性.A sort of system for faults detection and diagnosis based on the immunology principle was presented. Initial detectors were produced at random combining negative selection of self-patterns which response normal working situation of detecting objects. The learning and memory of non-self-patterns which response abnormal working situation of detecting objects were realized using the mechanism of evolution leaning based on the artificial immune theory. The corresponding zones of different faults on states space were distinguished and marked using the results of evolution learning and information warehouse of faults. Regarding the set of each era antibodys mutated in the system learning as a random series, the condition of convergence of the series and a proof were presented. The algorithm's astringency was proved. Appling the method in detection and diagnosis for faults of gear case of machine tools, the experimental results indicate that the method is effective.

关 键 词:人工免疫 进化学习 异常检测 故障诊断 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象