检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学通信抗干扰国家重点实验室,四川成都610054
出 处:《电子测量与仪器学报》2007年第5期64-68,共5页Journal of Electronic Measurement and Instrumentation
基 金:战术通信抗干扰技术国防科技重点实验室基金(编号:51434020105ZS04)资助
摘 要:作为一种用于解决诸如非线性分类,函数估计,密度估计一类问题有力的解决方法,支持向量机近来在其他许多基于核函数学习领域得到发展。基于混沌跳频码的动力系统特性,本文构建了一种支持向量机的预测模型,并采用最小二乘法对模型进行训练,最后通过L-K映射生成的跳频码序列对模型进行了验证,仿真结果表明这种高精度的支持向量机用于针对基于混沌映射的跳频码的预测,具有很低的均方误差和高相关系数良好性能。Support vector machine (SVM) is a powerful method for solving problems such as nonlinear classification, function estimation and density estimation. It has also achieved great developments in many other kernelbased learning fields recently. Based on the chaotic-FH code characteristics in chaotic dynamic system, a prediction model of support vector machine in combination with Takens' delay coordinate phase reconstruction of chaotic time is established; and least square model for large-scale problems is used to train this model. Finally an FH-code series generated by Logistic-Kent mapping is applied to test the model. Simulation results show that this high-accuracy and fault-tolerant SVM model has an excellent performance with very low mean square error and high correlation coefficient in chaotic-FH code prediction.
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80