检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学医疗器械与食品学院,上海200093 [2]上海交通大学电子信息与电气工程学院,上海200030
出 处:《上海理工大学学报》2007年第2期195-199,共5页Journal of University of Shanghai For Science and Technology
基 金:国家973重点基础研究项目(G1998030408);上海高校选拔培养优秀青年教师科研专项基金(358536)
摘 要:提出了一种基于Mean Shift方法的视频车辆检测和分割方法.首先将交通场景图像与路面区域所对应的二值掩模图像进行“与”运算以排除无关背景干扰,并对所得的结果图像用Mean Shift聚类方法进行分割以得到原始的分割图像.然后根据区域的面积、分布以及颜色的均匀性和相似性等特征有效过滤出路面区域.进一步基于颜色的不相似度量,将路面区域置“黑”,所有其他区域置“白”,对路面区域图像进行二值化.最后通过特定的后处理过程可把路面区域中所存在的动、静态车辆检测出来.A video vehicle detecting and segmenting approach is introduced based on the Mean Shift method. First, it eliminates the disturbance from unrelated background by AND operation between a traffic image and the binary mask of road area, and then it segments the result image by Mean Shift clustering method to obtain the original segmented image. The road area can then be filtered out according to the features such as area, distribution of the segmented regions, uniformity and similarity of region colors, and so on. Further, based on dissimilarity measurement of the color, the region of road area is set to be "white" and all the other regions "black" to obtain the binary image. Finally, both static and moving vehicles can be detected by certain post-processing steps. Validity of the method is proved by the experimental result given at the end.
关 键 词:智能交通系统 图像分割 车辆检测 Mean SHIFT
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229