非紧致一秩Riemann对称空间上的中心极限定理  

在线阅读下载全文

作  者:朱赋鎏[1] 

机构地区:[1]武汉大学数学系,武汉430072

出  处:《科学通报》1997年第12期1260-1262,共3页Chinese Science Bulletin

摘  要:Terras,于1984年得到了Poincar(?)上半平面M=SL(2,R)/SO(2)的中心极限定理.这是在非紧致Riemann对称空间上得到的第一个非Euclid中心极限定理.以球Fourier变换作基础,利用Lohoue和Rychner得到的热核表达式,我们在本文中建立起非紧致一秩Rie-mann对称空间上的非Euclid中心极限定理.设M=G/K为非紧致Riemann对称空间,9和(?)分别是G和K的Lie代数,(?)=(?)+(?)为Cartan分解,a是(?)中的极大Abel子空间,a是a的对偶空间,a^+是a中的正Weyl室,Ω^+是Lie代数 (?)相对于a^+的全体正根之集,ρ=1/2∑_(λ∈Ω)^+mλ·λ是(?)的半正根和,其中m_λ为根λ的重数,(?)=(?)+a+n为相应的Iwasawa分解,x∈G,H(x)∈a是x在a中的投影.

关 键 词:随机变量 热核 黎曼对称空间 中心极限定理 

分 类 号:O211.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象