检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宏宇[1] 糜仲春[1] 梁晓艳[1] 叶跃祥[1]
出 处:《中国科学院研究生院学报》2007年第6期742-748,共7页Journal of the Graduate School of the Chinese Academy of Sciences
摘 要:随着电子商务的迅速发展,推荐系统与算法已经成为理论研究的热点.支持向量机是一种强大的分类工具,由其衍生出的支持向量机回归方法能很好地解决非线性回归问题.以电影推荐为例,引入支持向量机回归方法来分析项目的内容,构建用户模型,进而给出推荐.实验结果和理论分析表明,这种推荐算法与传统协同过滤算法相比,能够明显提高推荐精度,并显著缩短了推荐所需时间;在大样本量情况下也能同样高效.Recommender systems and recommendation algorithm has become one of the hotspots of data mining research, with the rapid boosting of e-commerce. Support Vector Regression (SVR) algorithm has been introduced to construct a content-based recommend approach. First, the contents of rated items are analyzed with SVR to build regression model of user profiles for active users. Then use the user profiles to give recommendations. Experimental results on the EachMovie dataset show that the proposed approach has better recommend performance and less time spending than the conventional collaborative filtering approach.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175