检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周展宏[1]
出 处:《四川师范大学学报(自然科学版)》2007年第6期734-736,共3页Journal of Sichuan Normal University(Natural Science)
摘 要:研究一类带调和势的非线性Schrdinger方程,根据带调和势与不带势的非线性Schrdinger方程之间的联系,以不带势的非线性Schrdinger方程的爆破率为基础,运用Carles(SIAM J.Math.Anal.,2003,35:823-843.)所建立的变换研究了带调和势的非线性Schrdinger方程爆破解,得到其爆破率的下界.We consider the Cauchy problem for a nonlinear Schrodinger equation with a harmonic potential. Caries (SIAM J. Math. Anal. ,2003,35:823-843. ) established the local existence and the existence of blow-up solutulons. Based on the relations between nonlinear Schrodinger equations with and without harmonic potential, we sdudy the blow-up solutions of nonlinear Schrodinger equation with a harmonic potential, using a tansformation established by Carles and the blow-up rate of the blow-up solution of nonlinear Schrodinger equation without harmonic potential, we establish the lower bound of the blow-up rate of the blow-up solutions for the nonlinear Schr'odinger equation with a harmonic potential.
关 键 词:非线性Schrdinger方程 调和势 爆破率
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63