检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈德运[1] 张华[1] 朱波[1] 于晓洋[1] 张健沛[2]
机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080 [2]哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《电机与控制学报》2007年第6期639-643,共5页Electric Machines and Control
基 金:国家自然科学基金(60572153);国家教育部重点科技项目(204043);黑龙江省自然科学基金(F200609)
摘 要:两相流体具有复杂的流动特性,流型的准确辨识是两相流参数准确测量的基础,流型的在线智能辨识是两相流研究的重点内容之一。以电阻层析成像(ERT)系统和油/水两相流的流型为研究基础,采用主成分分析方法对ERT系统中的边界测量电压数据进行特征提取,然后以提取的特征数据作为基于一对余类策略的支持向量机多类分类模型的输入,从而对两相流的四种流型进行识别。通过实验仿真分析,四种流型的平均识别率达到了88.75%,说明主成分分析和支持向量机的结合是一种两相流流型辨识的有效方法。Two-phase fluid has complex flow characteristic, and accurate identification of flow regime is the foundation of measuring two-phase flow's parameter. As a result, the online intelligent identification of flow regime is an important role of two-phase flow research. The research in this paper is based on electrical resistance tomography system and flow regime of oil-water two-phase flow. First, principal component analysis is adopted to extract the feature of the border measurement voltage data of the electrical resistance tomography system, then the extracted feature data is taken as input information of the support vector machine multi-class classifier which is based on one to all strategies, so the four kinds of two-phase flow regime can be identified. Through the experiment simulation analysis, the four kinds of flow regime's average recognition rate is up to 88. 75%. It can be concluded that the combination of principal component analysis and support vector machine is an effective method of two-phase flow regime identification.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26