检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学信息科学与工程学院,浙江宁波315211
出 处:《计算机工程与科学》2007年第2期62-65,共4页Computer Engineering & Science
摘 要:本文介绍了一种可用于交通标志识别的新方法——支持向量机(SVM)算法,并将SVM算法与BP算法在交通标志的粗、细分类中的识别效果进行了对比分析。用中国的116个和日本的23个交通标志标准图分别训练基于SVM算法和基于BP算法的智能分类器,并用中国标志的噪声图、扭曲图和531个日本交通标志实景图作为测试集。在粗分类中,虽然BP算法的识别率也能达到90%以上,但SVM算法的识别率几乎可达100%,二者差距明显。在细分类中,SVM算法的识别效果与BP算法相比具有更加明显的优势。实验研究结果表明,SVM算法可以以接近最优的方式解决模式分类问题,同时具有更好的泛化能力,在交通标志识别领域具有良好的研究价值和应用前景。Support vector machine(SVM)is a novel machine learning method based on the statistical learning theory,which can avoid over-learning and provides good generalization performance.In this research,Multi-category SVM(M-SVM)is applied to traffic sign recognition and is compared with the BP algorithm,which has been commonly used in neural networks.116 Chinese ideal signs and 23 Japanese signs are first chosen for training M-SVMs and BP intelligent classifiers.Next,noise signs,level twisted signs from real Chinese and Japanese traffic signs are selected as a test set for the purpose of two network testing.Experimental results indicate that SVM has achieved a nearly 100% recognition rate and has certain advantages over the BP algorithm in approximated classification for traffic signs.In fine classification,SVM shows its superiority to the BP algorithm.Based on the analysis of the results,one may come to a conclusion that SVM algorithm is well worth the research efforts and is very promising in the area of trafficsign recognition.
关 键 词:道路交通标志识别 模式分类 分类器 支持向量机 BP算法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.241.170