检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙蓓蓓[1] 周长峰[1] 张晓阳[1] 孙庆鸿[1]
出 处:《东南大学学报(自然科学版)》2007年第6期974-979,共6页Journal of Southeast University:Natural Science Edition
基 金:国家自然科学基金资助项目(50575040);江苏省自然科学基金资助项目(BK2007112)
摘 要:为深入研究工程车辆橡胶悬架的非线性动力学特性,提高车辆的行驶平顺性,建立了车辆两自由度动力学模型及包含悬架刚度立方非线性的运动微分方程,采用多尺度法和李亚普诺夫一阶近似理论求解系统的幅频响应特性、稳定性及其判定.通过数值仿真,获得了主共振和内共振条件下的非线性橡胶悬架系统在不同刚度参数时的幅频响应、转迁集与分岔.结果表明非线刚度参数对车辆系统幅频响应曲线弯曲程度、共振区大小及稳定区域的有很大影响.根据所获得的规律,合理地选择悬架的刚度参数,可以避开系统可能出现的内共振及跳跃等不稳定现象,从而有效地控制车辆的振动.In order to ascertain the nonlinear dynamic characteristics of the rubber suspension of construction vehicle, a two-DOF (degree of freedom) dynamic equation with cubic nonlinear stiffness was established. The amplitude frequency response was obtained by the method of Multiple-scales. The stability of the nonlinear rubber suspension system was analyzed by adopting Liapunov first approximation theory. Via numerical simulation, the nonlinear dynamic behavior of the rubber suspension under the conditions of master resonance and internal resonance was acquired. The relationship between stiffness parameters and system response, bifurcation and transition sets of the system were analyzed. The acquired results show that stiffness parameters should be chosen properly when optimizing the suspension system, so that the instability of rubber suspension system under some parameters can be avoided and the vibration of the vehicle can be controlled effectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28