检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《力学与实践》2007年第6期23-26,共4页Mechanics in Engineering
摘 要:针对有周期解的动力系统边值问题可以转化为初值问题这一特点,改进了周期解的打靶法数值求解.在计算边界条件代数方程关于待定初值参数导数的过程中利用前一次Runge-Kutta方法计算得到的节点函数值并通过再次利用Runge-Kutta方法获得了该导数值.用此方法求解了Duffing方程及非线性转子—轴承系统的周期解,用Floquet理论判断了周期解的稳定性,与普通打靶法作了比较,验证了方法的有效性.Boundary value problems for dynamical systems with periodic solutions can be turned into initial value problems. With this point in mind, the paper improves the shooting method. In the process of computing derivatives of boundary conditions' algebraic equations, which are functions of unknown initial value parameters, the node function values are obtained through Runge-Kutta method, and by using Runge-Kutta method once more, the derivatives can be obtained. The validity of such a method is verified by using it to obtain periodic solutions of Duffing equation and nolinear rotor-bear system, and comparing the results with those computed by traditional method. Meanwhile, we discuss the stability of the solutions by Floquet theory.
关 键 词:打靶法 周期解 非线性 动力系统 RUNGE-KUTTA法
分 类 号:O322[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63