基于蚁群算法的神经网络在企业资信评估中的应用  被引量:5

Application of neural network based on ant colony algorithm in credit rating

在线阅读下载全文

作  者:汪怔江[1] 张洪伟[1] 雷彬[1] 

机构地区:[1]四川大学计算机学院,成都610064

出  处:《计算机应用》2007年第12期3142-3144,共3页journal of Computer Applications

摘  要:BP算法在资信评估中应用较为广泛,但有收敛速度慢、易于陷入局部极小点的缺点。提出一种新的企业资信评估模型,该模型将蚁群算法和神经网络结合起来,使其既具有神经网络的广泛映射能力,又有蚁群算法带来的高效率,全局收敛,分布式计算等特点。实验表明,基于蚁群算法的神经网络对企业资信评估有着良好的性能。Back Propagation (BP) is widely used in credit rating, but it has such shortcomings as slow convergent speed and easy convergence to the local minimum points. A credit rating model that combined ant colony algorithm with neural network was proposed. It not only has the extensive mapping ability of neural network, but also has the advantages of high efficiency, rapid global convergence and distributed computation of ant system. The experimental result indicates good performance can be obtained by neural network based on ant colony algorithm in application of the credit rating.

关 键 词:蚁群算法 神经网络 资信评估 BP算法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象