检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《吉林师范大学学报(自然科学版)》2007年第4期3-5,34,共4页Journal of Jilin Normal University:Natural Science Edition
基 金:辽宁省高等学校优秀人才支持计划(RC-04-11)
摘 要:1977年,为了研究平面上插值结点的分布情况,使之能够惟一确定一个二元Lagrange插值多项式,Chung和Yao在[5]中首次引入几何特征(GC)这一概念,并使得所构造出的Lagrange函数是一次实系数多项式乘积的形式.1982年Gasca和Maeztu在[6]中给出了平面上任何一个满足GC条件且含(n+2)(n+1)/2个点的集合必有其中n+1点共线的猜想.后来,Carnicer与Gasca在[3]中对该猜想在n≤4的情况下给出了证明,并在[4]中从亏量的角度对满足GC条件的结点集进行了探讨.此文章则对该猜想在n=5的情形进行了研究并给出了相应的结果,该结果推广了Carnicer和Gasca在[3]与[4]中所得到的主要结论.In 1977, in order to study the distributions of interpolation nodes in the plane, in which a bivariate Lagrange interpolation polynomial can be. uniquely determined, Chung and Yao first introduced in [5] the concept Geometric Characterization (GC), and made Lagrange functions products of 1st - degree polynomials of real coefficients. In 1982, Gasca and Maeztu put forward in [ 6] a conjecture stating that any set of ( n + 2) ( n + 1 )/2 points in the plane satisfying the GC condition must contain in the set n + 1 coUinear points. Later, Carnicer and Gasca gave the proof to the conjecture for the cases n ≤4 in [3] and discussed in [4] the set of nodes satisfying the GC condition from the point of defect. This paper considers then the conjecture for the case n = 5 and gives the corresponding reauhs, which generalize the conclusions of Carnieer and Gasca obtained in [3] and [4].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.248.40