检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘奇才[1] 王凤清[1] 洪国粦[1] 徐美华[1] 欧启水[1]
机构地区:[1]福建医科大学附属第一医院检验科,福建福州350005
出 处:《中国中西医结合消化杂志》2007年第6期385-387,共3页Chinese Journal of Integrated Traditional and Western Medicine on Digestion
摘 要:[目的]通过胰腺炎发生过程中酶学的时限变化建立人工神经网络(Artif-icial Neural Networks,ANN)模型来预测胰腺炎患者病程变化。[方法]分析131例胰腺炎患者的临床资料及其血尿淀粉酶、血脂肪酶的测定时间和结果,把测定时间(h)、血尿淀粉酶、血脂肪酶测定值归为4个集合,应用MATLAB6.5软件描出拟合曲线,并建立胰腺炎发病全程酶学监测的ANN模型,同时随机抽取14例临床确诊患者(具有确切病程)的数据作为输入值进行模型验证,以检测网络的稳定性。[结果]在发病的早期胰腺炎患者血脂肪酶和血淀粉酶基本上呈正相关(Y=24.5174+47.7886X,r=0.5282,P<0.01),而整个病程中血脂肪酶能更有效地反映患者病情变化,血尿淀粉酶和血脂肪酶拟合的ANN模型对胰腺炎病程预测的准确度为56.6%。[结论]利用胰腺炎酶学ANN进行胰腺炎病程预测能起到良好效果。Objective To identify pancreatitis complication tendency development through artificial neural network science calculation.MethodsThe clinical data and laboratory data including urinary amylase, blood amylase,lipidase and testing time of one hundred and thirty-one pancreatitis cases was analysed. The data was divided into four groups according to the testing time. MATLAB6.5 software was used to depicture the fitting curve and the ANN model to monitor the enzymology changes of the whole range of pancreatitis was established. And fourteen cases of clinical definite pancreatitis were collected to test artificial neural network at the same time.Results In the early stage of pancreatitis, the blood lipidase and blood amylase had positive correlation(Y=24.517 4+47.788 6X,r=0.5282,P〈0.01). During the whole course of pancreatitis, the blood lipidase could reflect the changes of pathogenetic condition. The accuracy rating of ANN model to predict the course of pancreatitis was 56.6%.Conclusion The ANN model to monitor the enzymology changes of the whole range of pancreatitis is a good method to predict the changes of pathogenetic condition.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66