Beta-Gamma函数对余元公式的推导与实现  被引量:2

Realization and Demonstration of Odd Element Formula by Beta-Gamma Function

在线阅读下载全文

作  者:宋占奎[1] 於全收[1] 燕嬿[1] 胡杰军[1] 

机构地区:[1]湖北十堰职业技术学院,湖北十堰442000

出  处:《陕西教育学院学报》2007年第4期85-88,共4页Journal of Shaanxi Institute of Education

摘  要:对构造的公式①,在复数域将其被积函数分解得2n个复根.在实数域将其实虚部积分取极限获证.对构造的公式②,由①将其被积函数的连续性、收敛性及一致收敛性与构造的有理数列用变量替换代入取极限获证.再由①与②应用Gamma-Beta函数的另一形式及(3),得到了余元公式的实现.For constructed formula(1), and make integrand(formula)in complex field decompose into 2n times complexroots,and make real and imaginary part in real number field integrate and then obtain the limit, presenting constructed formula(2). And make the continuity, astringency, uniform convergence and constructed rational line of integrand( formula) from the result (1) arrange firstly into various variable quantities, replace and substitute each one. Secondly, obtain the limit. Another way from the result(1),(2)each applied into Gamma-Beta Function,and obtain the realization of Odd Element Formula by using another way and the result(3).

关 键 词:连续 收敛 实数域 复数域 一致收敛 有理数列 BETA函数 GAMMA函数 余元公式 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象