检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋占奎[1] 於全收[1] 燕嬿[1] 胡杰军[1]
出 处:《陕西教育学院学报》2007年第4期85-88,共4页Journal of Shaanxi Institute of Education
摘 要:对构造的公式①,在复数域将其被积函数分解得2n个复根.在实数域将其实虚部积分取极限获证.对构造的公式②,由①将其被积函数的连续性、收敛性及一致收敛性与构造的有理数列用变量替换代入取极限获证.再由①与②应用Gamma-Beta函数的另一形式及(3),得到了余元公式的实现.For constructed formula(1), and make integrand(formula)in complex field decompose into 2n times complexroots,and make real and imaginary part in real number field integrate and then obtain the limit, presenting constructed formula(2). And make the continuity, astringency, uniform convergence and constructed rational line of integrand( formula) from the result (1) arrange firstly into various variable quantities, replace and substitute each one. Secondly, obtain the limit. Another way from the result(1),(2)each applied into Gamma-Beta Function,and obtain the realization of Odd Element Formula by using another way and the result(3).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.36