检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张卷美[1]
出 处:《大学数学》2007年第6期135-139,共5页College Mathematics
摘 要:迭代方法是求解非线性方程近似根的重要方法.本文基于隐函数存在定理,提出了一种新的迭代方法收敛性和收敛阶数的证明方法,并分别对牛顿(Newton)和柯西(Cauchy)迭代方法迭代收敛性和收敛阶数进行了证明.最后,利用本文提出的证明方法,证明了基于三次泰勒(Taylor)展式构成的迭代格式是收敛的,收敛阶数至少为4,并提出猜想,基于n次泰勒展式构成的迭代格式是收敛的,收敛阶数至少为(n+1).Iterative method is an important technique to solve the approximate root for nonlinear equations. In this article, with the implicit function theorem, we present a new method for proving the convergence and deriving the convergence order for an iterative method. With these new method, we demonstrate that the Newton iteration method and the Cauchy iteration method are convergent and their convergent order are at least 2 and 3 respectively. Then based on the Taylor expansion of degree of 3, we present a local convergent iteration method, which has the convergence order at least 4. At last, we propose a guess that the iteration method, based on the Taylor expansion of degree of n, is convergent and its convergence order is at least (n+ 1).
关 键 词:迭代收敛 迭代收敛阶数 泰勒(Taylor)展式 方程求根
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15