检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东师范大学计算机系
出 处:《计算机科学》2008年第1期211-212,共2页Computer Science
基 金:华东师范大学211重点项目(521B0108)
摘 要:单变量的决策树算法造成树的规模庞大,规则复杂,不易理解。本文结合粗糙集原理中的相对核及加权粗糙度的方法,提出了一种新的多变量决策树算法。通过实例表明,本文的多变量决策树方法产生的决策树比传统的ID3算法构造的决策树更简单,具有较好的分类效果。Decision Tree Algorithm in univariate tests caused large-scale, complex rules that are difficult to understand. Based on the rough sets theory of attributes reduction, the core of condition attributions and the Weighted roughness Of condition attributions, a new multivariate decision tree algorithm is proposed. A example shows in this paper, the decision tree built by the method is more simple and has better classification result than that of ID3 algorithm.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.71