检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院合肥智能机械研究所
出 处:《小型微型计算机系统》2008年第1期110-113,共4页Journal of Chinese Computer Systems
基 金:国家自然科学基金重点项目(69835001)资助
摘 要:复杂环境中存在大量的混沌现象,难以用传统的预测方法进行准确预测.针对这一问题,本文利用信息几何理论、支持向量机理论与重构相空间理论,提出混沌支持向量机CSVM,对含有混沌现象的时间序列进行预测;针对混沌环境下核函数难于构造,从信息几何角度,提出在混沌环境下,如何方便准确得进行构造核函数;最后将CSVM应用于Henon混沌系统实验.实验结果表明,误差随嵌入维数变化和延迟时间变化趋于恒定;与BP、RBF和SVM相比,CSVM具有所需支持向量少,收敛速度快,准确性高等特点.There are many chaos phenomenons in complex environment, so it is difficult to predict by the traditional methods. Chaos support vector machine was given to predict time-series with chaos phenomenon to overcome the disadvantages of the traditional methods in this paper based on information geometry, SVM theory and chaos theory. Especially, a new kernel function was introduced into the chaos support vector machine from the perspective of information geometry and thus it is easy to design the kernel function. Finally, the method was applied to Henon chaos system compared with the BP, RBF and SVM. The prediction results indicate that the predictive error changes with the increase of embed dimension and delay time to a constant. And the results also show that the chaos support vector machine is more precise although it requires smaller support vector, and has faster convergence rate, compared with BP,RBF and SVM.
分 类 号:TP173[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198