检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学浙西分校化工系 [2]浙江工业大学催化研究所,浙江杭州310014
出 处:《化学反应工程与工艺》2007年第6期525-530,共6页Chemical Reaction Engineering and Technology
基 金:浙江省自然科学基金(Y407266);浙江省工业催化重中之重学科开放基金(200602)
摘 要:由于常规遗传算法(SGA)的全局寻优效率不高,用于复杂的生物脱硫反应动力学模型参数优化时效果欠佳,为此设计了一种新的多变异遗传算法(MGA)以提高全局寻优效率。MGA的改进措施包括散射变异、微扰变异和单纯形变异各算子的设计,多变异操作实施方案的制定,选择操作和交叉操作方式的选择和改进等。Shaffer's F6函数和10维Alpine函数测试表明,与SGA相比,MGA的全局寻优效率大大提高。将MGA应用于红球菌DS-3脱除二苯并噻吩(DBT)的动力学模型参数优化,建立了更为准确的反应动力学模型。Simple genetic algorithm (SGA) was a stochastic global optimization algorithm, however, due to its poor performance in local optimization and poor results to optimize kinetic model parameters of biodolesulfurization, a new multi-mutation genetic algorithm (MGA) was designed to improve the global optimization performance and local optimization. The improvement of the new method included designing scattering mutation operator, small perturbation operator and simplex method search mutation operator, establishing the course of performing multi-mutation operation, and choosing or improving available selection operation and crossover operation. Shaffer's F6 function and ten-dimensional Alpine function were applied to test MGA. The results demonstrated that the global optimization performance of MGA was superior to that of SGA. Furthermore, MGA was applied to optimize the kinetic model parameters of biodesulfurization of dibenzothiophen by Rhodococcus Sp DS-3, and a more accurate kinetic model was established.
关 键 词:生物脱硫 动力学模型 参数优化 随机优化 遗传算法 多变异算子
分 类 号:TQ021.8[化学工程] TQ920.1[轻工技术与工程—发酵工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30