检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]信阳师范学院数学与信息科学学院,河南信阳464000
出 处:《信阳师范学院学报(自然科学版)》2008年第1期12-14,共3页Journal of Xinyang Normal University(Natural Science Edition)
摘 要:提出一类新的求解无约束优化问题的超记忆梯度法,并在较弱条件下证明了算法的全局收敛性.当目标函数为一致凸函数时,对其线性收敛速度进行了分析.This paper presents a new class of supermemory gradient methods for unconstraind optimization problems and proves its global convergence under some mild conditions. The linear convergence rate is investigated when the objective function is uniformly convex.
关 键 词:无约束优化 超记忆梯度法 Armijo线性搜索 全局收敛性
分 类 号:O221.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3