医学图像决策支持系统中的SVM算法  被引量:1

Algorithm of Support Vector Machine for Medical Image Decision Support System

在线阅读下载全文

作  者:孙蕾[1] 

机构地区:[1]西安电子科技大学经济管理学院,西安710071

出  处:《计算机工程》2008年第3期27-28,55,共3页Computer Engineering

摘  要:支持向量机(SVM)方法是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。因此标准的SVM方法需要求解二次规划问题,计算量很大。该文以一个医学决策支持系统为应用背景,介绍一种解决该问题的新方法。在UCI数据集和所开发的决策支持系统上的应用表明,该算法简便可行,具有更高的精度和更快的速度。Support Vector Machine (SVM) is to correctly classify samples into two parallel planes in input or feature space by optimal planes (lines). And the margin between the two classes is made to be the largest. The standard SVM requires to solve quadratic program that needs considerable computational time. Based on a concrete decision support system of medical images, a novel algorithm is introduced to solve the problem. Experimental results on UCI and a developed decision support system demonstrate that the presented algorithm is simple, feasible, and faster with better precision.

关 键 词:支持向量机 分类算法 决策支持 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象