检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙蕾[1]
机构地区:[1]西安电子科技大学经济管理学院,西安710071
出 处:《计算机工程》2008年第3期27-28,55,共3页Computer Engineering
摘 要:支持向量机(SVM)方法是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。因此标准的SVM方法需要求解二次规划问题,计算量很大。该文以一个医学决策支持系统为应用背景,介绍一种解决该问题的新方法。在UCI数据集和所开发的决策支持系统上的应用表明,该算法简便可行,具有更高的精度和更快的速度。Support Vector Machine (SVM) is to correctly classify samples into two parallel planes in input or feature space by optimal planes (lines). And the margin between the two classes is made to be the largest. The standard SVM requires to solve quadratic program that needs considerable computational time. Based on a concrete decision support system of medical images, a novel algorithm is introduced to solve the problem. Experimental results on UCI and a developed decision support system demonstrate that the presented algorithm is simple, feasible, and faster with better precision.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195