基于聚类与自适应神经模糊推理的车速预测  被引量:1

Vehicle speed prediction based on clustering and adaptive neuro-fuzzy inference

在线阅读下载全文

作  者:王辉[1] 

机构地区:[1]同济大学道路与交通工程教育部重点实验室,上海200092

出  处:《计算机工程与应用》2008年第6期240-242,共3页Computer Engineering and Applications

摘  要:针对道路交通系统的非线性和随机性特点,设计一种具有学习能力的车速预测方法。首先,对交通流历史特征数据采用模糊聚类的方法进行状态分类并确立模型结构。然后,建立交通流状态预测的自适应神经模糊系统,以实测交通流数据进行系统参数优化训练。最后,利用MATLAB进行系统的仿真及检测。检测的预测结果表明系统具有良好的应用性能。This paper presents a new method with adaptive inference capability for prediction of vehicle speed,considering the non-linearity and uncertainty of traffic flow.The first step is to cluster the traffic flow data and to build up the framework of the inference system.The second step is to train and optimize the coefficients with Adaptive Neuro-fuzzy Inference System(ANFIS).The last step is to simulate and test the system with the MATLAB software.The testing result shows that the system is applicable.

关 键 词:交通运输工程 车速预测 减法聚类 自适应神经模糊推理系统 训练 检测 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] U491[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象