拟Raabe判别法与拟对数判别法的强弱关系  被引量:2

The Ralation of Strength within Quasi-Raabe Judge Method and Quasi-Logarithmic Criteria

在线阅读下载全文

作  者:杨钟玄[1] 

机构地区:[1]天水师范学院数理与信息科学学院,甘肃天水741001

出  处:《大学数学》2008年第1期187-190,共4页College Mathematics

摘  要:拟Raabe判别法是新近提出的关于正项级数收敛性的一种比较细致的判别法.对通项递减的正项级数来说,此判别法强于传统的Raabe判别法与Gauss判别法.通过对拟Raabe判别法与另一个细致的判别法——拟对数判别法强弱关系的探讨,得出了后一判别法强于前者的结论.The quasi-Raabe judge method newly presented is a more careful judge method about convergence of positive series. When the terms of positive series are decreasing, the method is stronger than the traditional Raabe method and Gauss method. By the probe about the ralation of strength within quasi-Raabe judge method and another careful judge method--quasi-logarithmic criteria, we have obtained a conclusion that latter one is stronger than the former.

关 键 词:正项级数 收敛 发散 判别法 

分 类 号:O174.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象