检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海事大学交通工程与物流学院,辽宁大连116026 [2]鞍钢附企设计研究院,辽宁鞍山114000
出 处:《大连海事大学学报》2008年第1期122-124,128,共4页Journal of Dalian Maritime University
摘 要:为了对预应力混凝土(PRC)结构中预应力值进行检测与评价,采用神经网络技术,基于自振特性对PRC简支梁的预应力识别进行了数值仿真研究.分别在不同预应力水平上计算预应力梁的前10阶自振频率,经过归一化处理构造网络的训练样本,由网络输出指示预应力大小.采用3层BP网络,通过15个训练样本的训练,网络展示了良好的收敛性.对3种不同预应力水平的仿真测试表明,最大相对误差仅为2.08%,具有较高的识别精度.The detection and assessment of prestressing force in prestressed reinforced concrete(PRC) structure with natural frequencies were carried out based on BP network. Ten natural frequencies of PRC simply supported beam were calculated under different prestressing force conditions and normalized as input vectors of the training sample, and prestressing force was chosen as out vectors. Three-tier BP networks were trained, and the convergence of iterative sequence was admissible. Simulation on three different prestressing force shows that the maximum relative error is only 2.08 %. Test results verify the feasibility of the proposed method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49