一类算子在哈代空间上的弱型估计  

Weak type estimate of some operators on Hardy spaces

在线阅读下载全文

作  者:曹勇辉[1] 周疆[1] 

机构地区:[1]新疆大学数学与系统科学学院,新疆乌鲁木齐830046

出  处:《陕西师范大学学报(自然科学版)》2008年第2期19-21,共3页Journal of Shaanxi Normal University:Natural Science Edition

基  金:国家自然科学基金资助项目(10771054);新疆大学青年基金资助项目(QN040105)

摘  要:研究了相应于齐次群的哈代空间上一类卷积算子的弱有界性.利用卷积核的条件得到核的尺寸估计,通过这个估计,利用原子分解理论和极大函数理论,得到了一类卷积算子从哈代空间到弱勒贝格空间是有界的.作为应用,讨论了广义Bochner-Riesz平均的极大算子与球平均极大算子在哈代空间上的弱有界性.Some weak type estimates for some operators on Hardy spaces associated with the homogeneous group are discussed. A size estimate of the kernel is obtained by using the condition of kernel. Using the method of atomic decomposition and maximal function, the convolution operator is proved to be bounded from Hp to weak-L^p. As an application, weak type endpoint estimates are obtained for the maximal operators arising from the generalized Bochner-Riesz means and the spherical means on Hardy spaces.

关 键 词:齐次群 哈代空间 伯塔-黎滋平均 球平均 

分 类 号:O174.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象