检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学计算机科学与技术研究所
出 处:《计算机科学》2008年第3期158-160,193,共4页Computer Science
基 金:国家自然科学基金项目(No.60373111);重庆市教委科学技术研究项目(No.KJ060517);重庆市自然科学基金重点资助项目(2005BA2003);重庆市优秀中青年骨干教师资助计划
摘 要:集成学习主要通过扰动训练数据集来产生较强泛化能力。研究者们提出了各种各样的方法来实现这一目标,但如何扰动训练数据集以达到最佳的泛化能力并没有被深入研究。本文中,提出了对训练数据集进行扰动的交叉分组(cross-grouping)方法,通过改变交叉因子以实现对训练数据集不同程度的扰动,从而实现当集成规模较小时,得到更强的泛化能力。实验表明,当选择合适的交叉因子时,CG-Bagging泛化能力要强于Bagging和Boosting,略优于Decorate和Random Forests。Ensemble learning is through disturbing training data to generate strong generalization ability. Researchers have proposed a variety of methods to achieve this goal, but how to achieve the best generalization ability by disturbing training data has not been thorough study. In this paper, we give a novel method called cross-grouping to disturb training data, and achieve different degrees of the disturbance of training data by varying cross-factor. Based on this method, we can achieve stronger generalization ability when the ensemble size is small. Experiment shows that with an appropriate choice of cross-factor, the generalization ability of CG-Bagging is stronger than that of Bagging and Boosting, and slightly better than that of Decorate and Random Forests.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31