检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北水利水电学院数学与信息科学学院,河南郑州450011
出 处:《郑州大学学报(工学版)》2008年第1期106-109,共4页Journal of Zhengzhou University(Engineering Science)
摘 要:针对人工神经网络在预测中出现的异常值现象,采用了回归分析模型得到的预测区间来控制异常值现象的方法.并且应用在黄河三门峡河段的水质预测中,氨氮通量预测的网络模型控制前平均精度仅有50.05%,这是因为2006年6月份预测值偏离真实值太大,预测相对误差达到214.88%,超出了回归预测区间,从而影响了整体精度.控制后该月的相对精度为90.08%,平均精度达到80.79%,整体预测精度明显提高.实践表明,该方法对于消除网络模型预测中出现的异常值现象是较为有效的.As to the abnormal phenomenon in the forecast of artificial neural networks, the method, in which the forecast range from the regression analysis model is used to control the abnormal phenomenon, has been adopted. In the forecast of the water quality of Yellow River in Sanmenxia, the average accuracy of the quantity of ammonia and nitrogen before the control of ANN is only 50.05% , which is because the forecast number is very different of the accurate number in June 2006, the relative error of the forecast number reach up to 214.88 percent, beyond the forecast range of regression, in order to have effect on the whole accuracy. The accuracy of this month is 90.08% , the average accuracy reaches up to 80.79% ; the whole forecast accuracy is proved obviously. The practice shows that the method is effective to eliminate the abnormal phenomenon in the artificial neural networks.
分 类 号:O212.5[理学—概率论与数理统计] O29[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3