检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京交通大学计算机与信息技术学院,北京100044
出 处:《计算机工程与应用》2008年第10期16-19,30,共5页Computer Engineering and Applications
基 金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60373029)
摘 要:倒立摆系统是强化学习的一种重要的应用领域。首先分析指出在倒立摆系统中,常用的强化学习算法存在着极限环问题,算法无法正确收敛、控制策略不稳定。但是由于在简单的一级倒立摆系统中算法的控制策略不稳定的现象还不明显,因此极限环问题常常被忽视。针对强化学习算法中极限环问题,提出基于动作连续性准则的强化学习算法。算法采用修正强化信号和改进探索策略的方法克服极限环对倒立摆系统的影响。将提出的算法用于二级倒立摆的实际系统控制中,实验结果证明算法不仅能成功控制倒立摆,而且可以保持控制策略的稳定。An important application of reinforcement learning in control systems is inverted pendulum.This paper points out that the common reinforcement learning algorithm will get into the limit cycles in the inverted pendulum system,which makes the algorithm incorrectly converge and destroy the stabilization of the optimal control policy.But the limit cycles problem is often ignored in many literatures as the goal of their algorithms is only to keep the pendulum stand in a given time.To overcome the limit cycles problem,this paper proposes a new reinforcement learning algorithm based on action continuity criterion,The algorithm revises the reinforcement signal and improves the exploration policy to overcome the negative effect of limit cycles in the inverted pendulum system.Simulation and actual control results of the double inverted pendulum system show the algorithm can not only control inverted pendulum successfully,but also keep the control policy stable.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49