基于改进BP神经网络的手写邮政编码识别  被引量:4

Handwriting Postal Codes Recognition Based on Improved BP Neural Network

在线阅读下载全文

作  者:顾妍午[1] 李平[1] 陶文华[1] 田绍宽[1] 

机构地区:[1]辽宁石油化工大学信息与控制工程学院,辽宁抚顺113001

出  处:《辽宁石油化工大学学报》2008年第1期52-54,58,共4页Journal of Liaoning Petrochemical University

摘  要:为解决手写邮政编码识别困难的问题,引入改进的粗网格特征提取方法,对神经网络的网络输入进行简化,并且采用基于LM算法的BP神经网络来进行网络学习。LM算法是一种改进的高斯-牛顿算法,此算法通过简化的网络输入,进一步提高了网络学习的精度、稳定度和学习速度。仿真结果验证了此算法在手写邮政编码识别中的有效性。In order to solve the difficult problem of handwriting postal codes recognition, an improved coarse grid feature extraction approach which simplifies network input of the neural network was introduced. BP neural network based on LM algorithm for network studying was adopted. LM algorithm is an improved Gauss- Newton algorithm. The improved algorithm further enhances precision, stability and studying speed of the network studying through the simplification of the network input. The ,simulation results show that the algorithm is effective on the handwriting postal codes recognition. Key words:

关 键 词:BP神经网络 LM算法 特征提取 手写邮政编码 

分 类 号:TP319[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象