检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学电子工程系,江苏南京210094
出 处:《电子学报》2008年第3期510-515,共6页Acta Electronica Sinica
摘 要:本文提出一种适用于任意未知统计特性的代数拖尾冲击噪声(包含所有对称α稳定分布噪声)环境下的波束形成算法.算法利用输出信号和参考信号之间"几何功率"误差的最小化来求解最优权向量."几何功率"误差定义成误差信号的对数矩的形式.我们采用迭代复加权最小二乘估计来求解最小"几何功率"误差波束形成权向量.与基于最小分数低阶误差波束形成算法相比,最小"几何功率"误差波束形成算法计算更为简单;不需要噪声特征指数的先验信息或估计;适用于更广的冲击噪声环境;具有更小的估计误差.计算机仿真验证了算法的有效性.This paper proposes a new beamforming approach, against arbitrary algebraicaUy-tailed impulsive noise of otherwise unknown statistics. (This includes all symmetric alpha stable noises). This new beamformer minimizes the “geometric power” error between the beamformer' s output and the reference signal. This “geometric power” error is defined in terms of the logarith- mic moment. The iteratively re-weighted least squares (IRIS) algorithm is adopted to calculate the proposed beamformer weights. Relative to costmary fractional lower order errors based beamformer, the proposed beamformer offers advantages such as: simpler computationally; needing no prior information nor estimation of the numerical value of the impulsive noise's effective characteristic exponent, applicable to a wider class of impulsive noises; and improving the performance in terms of lower estimation errors. Computer simulation results verify the efficacy of the proposed beamfonner.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15