冲击噪声环境中最小“几何功率”误差波束形成算法  被引量:8

Minimum "Geometric Power" Error Beamforming Amid Heavy-Tailed Impulsive Noise of Unknown Statistics

在线阅读下载全文

作  者:何劲[1] 刘中[1] 

机构地区:[1]南京理工大学电子工程系,江苏南京210094

出  处:《电子学报》2008年第3期510-515,共6页Acta Electronica Sinica

摘  要:本文提出一种适用于任意未知统计特性的代数拖尾冲击噪声(包含所有对称α稳定分布噪声)环境下的波束形成算法.算法利用输出信号和参考信号之间"几何功率"误差的最小化来求解最优权向量."几何功率"误差定义成误差信号的对数矩的形式.我们采用迭代复加权最小二乘估计来求解最小"几何功率"误差波束形成权向量.与基于最小分数低阶误差波束形成算法相比,最小"几何功率"误差波束形成算法计算更为简单;不需要噪声特征指数的先验信息或估计;适用于更广的冲击噪声环境;具有更小的估计误差.计算机仿真验证了算法的有效性.This paper proposes a new beamforming approach, against arbitrary algebraicaUy-tailed impulsive noise of otherwise unknown statistics. (This includes all symmetric alpha stable noises). This new beamformer minimizes the “geometric power” error between the beamformer' s output and the reference signal. This “geometric power” error is defined in terms of the logarith- mic moment. The iteratively re-weighted least squares (IRIS) algorithm is adopted to calculate the proposed beamformer weights. Relative to costmary fractional lower order errors based beamformer, the proposed beamformer offers advantages such as: simpler computationally; needing no prior information nor estimation of the numerical value of the impulsive noise's effective characteristic exponent, applicable to a wider class of impulsive noises; and improving the performance in terms of lower estimation errors. Computer simulation results verify the efficacy of the proposed beamfonner.

关 键 词:冲击噪声 波束形成l几何功率 对数矩 对称a稳定分布 

分 类 号:TP911.7[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象