可见/近红外光谱法无损检测赣南脐橙可溶性固形物  被引量:38

Non-Destructive Measurement of Soluble Solid Content in Gannan Navel Oranges by Visible/Near-Infrared Spectroscopy

在线阅读下载全文

作  者:刘燕德[1] 陈兴苗[1] 欧阳爱国[2] 

机构地区:[1]江西农业大学工学院,江西南昌 330045 [2]江西蓝天学院汽车系,江西南昌 330098

出  处:《光学学报》2008年第3期478-481,共4页Acta Optica Sinica

基  金:国家自然科学基金(60468002,30560064);教育部新世纪优秀人才资助计划(NCET-06-0575);江西省青年科学家(井冈之星)培养对象资助课题

摘  要:应用可见/近红外光谱法对赣南脐橙可溶性固形物进行了无损检测研究。通过主成分分析,获取光谱的有效信息,将其作为人工神经网络的输入变量进行非线性建模。90个建模样品训练结果是,样品参考值与预测值之间的相关系数为0.9147,训练均方差为0.5203;38个未知样品预测结果是:样品参考值与预测值之间的相关系数为0.9033,预测均方差为0.6964,相对预测偏差4.5709%。实验结果表明基于人工神经网络的可见/近红外光谱法无损检测赣南脐橙可溶性固形物是可行的。Non-destructive measurement of soluble solid content in Gannan navel oranges was carried out by visible/ near-infrared spectroscopy detection method. Effective information of spectra was obtained by principal component analysis, and was used as the input variables of artificial neural network for building the nonlinear model. The results, based on calibration for 90 samples, are 0. 9147 and 0. 5203 for calibration correlation coefficient and root mean square error of calibration. The results, based on prediction for 38 unknown samples, are 0. 9033, 0. 6964 and 4. 5709 % for prediction correlation coefficient, root mean square error of prediction, and relative standard deviation (RSD), respectively. Experimental results show that visible/near-infrared spectroscopy detection method, based on artificial neural network, for non-destructive measurement of soluble solid content in Gannan navel oranges is feasible.

关 键 词:医用光学与生物技术 可见/近红外光谱 无损检测 人工神经网络 主成分分析 可溶性固形物 赣南脐橙 

分 类 号:O657.33[理学—分析化学] TN247[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象