检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学电气与自动化工程学院,天津300072
出 处:《天津大学学报》2008年第4期419-422,共4页Journal of Tianjin University(Science and Technology)
摘 要:局部保留映射(locality preserving projections,LPP)选择人脸子空间特征包含非线性信息而不利于最近邻法分类.基于径向基函数(radial basis function,RBF)分类器可以将非线性可分问题转化为线性可分问题的特点,提出了利用LPP子空间和RBF网络相结合进行人脸识别的方法,LPP算法采用监督模式,RBF网络隐层中心采用正交最小二乘(orthogonal least-squares,OLS)法训练.实验结果表明,该方法在Yale-B和Yale-B Extended人脸数据库上的识别率为95.67%,在CMU-PIE人脸数据库上的识别率为98.52%,具有较好的抗噪能力,识别效果优于特征脸、Fisher脸以及拉普拉斯脸法.Face subspace features selected by locality preserving projections ( LPP ) contain non-linear information which leads to the failure of using the nearest neighbor classifier to recognition. Therefore, a face recognition method combining LPP subspace with radial basis function ( RBF ) classifier was proposed according to the advantage of RBF that could convert non-linear separable problem to a linear separability. In this paper, LPP was used in supervised mode and the hidden center of RBF network was trained with orthogonal least-squares (OLS) method.Extensive experimental results show that the recognition rates of the proposed method on Yale-B, Yale-B Extended face databases and CMU-PIE face database are 95.67% and 98.52%, respectively.The improved method has better anti-noise capability and its recognition rate is better than those of Eigenfaces, Fisherfaces and Laplacianfaces.
关 键 词:人脸识别 主成分分析 线性判别分析 局部保留映射 径向基函数
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.113.227