检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2007年第24期29-31,共3页Computer Engineering
基 金:国家自然科学基金资助项目(60474030)
摘 要:介绍一种利用量子行为粒子群算法(QPSO)建立上证指数收益的ARCH模型,利用不同的算法精确地估计模型中的参数,验证QPSO算法的优越性。利用得到的估计模型对指数收益进行预测,得到大致跟随指数实际走势的预测值。试验结果表明,QPSO算法比粒子群算法、遗传算法能更好地解决此类问题。This paper proposes an improved quantum-behaved particle swarm optimization using the notion of species for establishing the ARCH model for stock return, and then forecastes subsequent trend. The experimental results show quantum-behaved particle swarm optimization is better at solving this problem than PSO and GA.
关 键 词:ARCH模型 QPSO算法 PSO算法 异方差 遗传算法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30