检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学图像识别与人工智能研究所多谱信息处理技术国家重点实验室,湖北武汉430074
出 处:《红外与毫米波学报》2008年第2期95-100,共6页Journal of Infrared and Millimeter Waves
基 金:国家自然科学基金重点(60135020)资助项目
摘 要:低信噪比小目标检测能力决定着系统的探测灵敏度和作用距离,是反映红外低可观测目标识别能力至关重要的一项核心技术.自适应杂波背景抑制技术是实现这一目标的有效途径.本文将杂波背景抑制滤波归纳为逆问题求解的优化问题;建立了新的红外弱小目标/背景模型,在此基础上发展了一种基于规整化技术的滤波框架;并提出了"去杂波-保目标"规整化的自适应各向异性滤波新算法.详细的理论分析和试验结果表明:该算法能在单步处理中消除杂波背景、同时增强弱小目标信号,运算量小;对低信噪比的强杂波背景表现出良好的滤波性能和适应能力,且结构简单、利于硬件实时实现.The performances of detecting small targets at low signal-to- noise ratio (SNR) decide the detection sensitivity and effective ranging of a system. It is a leading key technique to indicate the ability of recognizing low-observable target in infrared (IR) imagery. Adaptive background estimation method is an efficient avenue to complete this task. In this study the clutter background prediction method was reduced to the optimization problems of inverse problem. New models of target/background in IR images were established, based on which a new filtering framework using regnlarization technology was presented, and then a novel anisotropic filtering method with the clutter-removal target-preserving' regnlarization was proposed. Detailed theoretical analyses and experimental results show that this method can remove the clutter background and simultaneously enhance the signal of interest in one processing step, and its computing complexity is very little; and it can also provide good filtering results and adaptability to IR targets with strong clutter background; moreover, its logical structure is simple to be implemented in real-time system.
关 键 词:小目标检测 自适应滤波 红外图像 规整化 优化问题
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248