检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学信息科学与技术学院,成都610031
出 处:《计算机工程》2008年第7期181-183,共3页Computer Engineering
摘 要:基于粒子分工与合作的思想,提出一种自适应粒子群优化(PSO)算法。该算法为不同的粒子分配不同的任务,对性能较好的粒子使用较大的惯性权,对性能较差的粒子采用较小的惯性权,加速系数根据惯性权自适应调整。将标准PSO算法中的全局最优位置与个体最优位置分别替换为相关个体最优位置的加权平均,更好地平衡了算法的全局与局部搜索能力,提高了算法的多样性与搜索效率。5个经典测试函数的仿真结果及与其他PSO算法的比较结果验证了该算法的有效性。Based on the idea of specialization and cooperation, an adaptive Particle Swarm Optimization(PSO) algorithm is proposed. In the new algorithm, different particles are assigned specific tasks. Better particles are given larger inertial weights, while worse ones are given smaller inertial weights. And the particle’s acceleration coefficients are adaptively adjusted according to its inertial weight. Besides, the personal best position and global best position in standard PSO algorithm are respectively replaced by the weighted mean of some relevant personal best positions. These strategies improve the PSO algorithm at the aspects of diversity and the balance of exploration and exploitation. The efficiency of the new algorithm is verified by the simulation results of five classical test functions and the comparison with other PSO algorithms.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.164.60