检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学计算机学院,重庆400030 [2]中国农业科学院柑桔研究所,重庆400700
出 处:《系统仿真学报》2008年第8期2056-2058,2104,共4页Journal of System Simulation
基 金:教育部博士点基金项目资助(20050611027);重庆市自然科学基金资助(CSTC2006BB1347)
摘 要:研究基于Boosting的柑桔溃疡病自动识别算法。提出了一种基于特征选择准则的Boosting学习算法,采用对称交叉熵作为弱分类器的相似度评价。将弱分类器相似度与Boosting学习过程相结合学习出更优化的弱分类器,对溃疡病斑图象进行特征选取和学习,建立了自适应的病斑特征模型,最后利用该模型完成溃疡病自动识别。实验结果表明,这种算法避免了Boosting算法进行特征提取时的缺点,减少了选取结果中的冗余,尤其在进行高维特征选取时,能够提高特征选取速度,使选取的特征更具代表性。To automatically detect citrus canker lesion, a theoretically justfied learning algorithm based on boosting was proposed. Symmetric cross entropy was used as the measure of similarity for weak classifiers. An optimal weak leaner was derived from AdaBoost algorithm. Using this learner, efficient features were selected and an adaptive citrus canker lesion model was constructed. A simulation system based on the model was tested and experiment results show that this method can overcome the disadvantage of boosting algorithm, solving the problem that there is redundancy in the selected features, especially in high-dimension feature selection .And the algorithm is proved to speed feature selection and get more efficient features.
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222