检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《重庆工学院学报(自然科学版)》2008年第3期100-103,120,共5页Journal of Chongqing Institute of Technology
摘 要:通过对汽车主动悬架建立再生神经网络模型,提出了一种神经模糊适应性控制算法,该算法在多层神经网络的基础上,借助一套模糊规则,调节模糊神经控制器参数,通过神经网络建模确定了汽车主动悬架的动态参数,并向神经模糊适应性控制器提供学习信号.对一辆装有磁流变液减振器及基于DSP微处理器模糊神经控制系统的微车,在各种速度与路面条件下进行试验,将控制效果与开环被动悬架系统的进行了比较,结果表明,神经控制算法在减小微车振动方面表现出了良好的性能.By building regenerating neural network model for automobile active suspension system, this paper puts forward a neural fuzzy adaptive control algorithm, which employs a set of fuzzy rules to adjust fuzzy neural controller parameters based on multi-layer neural network, establishes neural network model to determine the dynamic parameters of automobile active suspension, and provides learning signals for neural luzzy adaptive controllers. A minicar, equipped with Magneto-rbeological Fluid Shock Absorbers and DSP- based micro-processor fuzzy neural controlling system, is tested at various speeds and on different road conditions. The controlling effects are compared with those of open-loop passive suspension system and the results show that neural control algorithm has excellent performance in reducing minicar's vibration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62