基于量子神经网络的电网故障诊断算法  被引量:36

A Quantum Neural Network Based Fault Diagnosis Algorithm for Power Grid

在线阅读下载全文

作  者:刘超[1] 何正友[1] 杨健维[1] 

机构地区:[1]西南交通大学电气工程学院,四川省成都市610031

出  处:《电网技术》2008年第9期56-60,共5页Power System Technology

基  金:教育部优秀新世纪人才支持计划项目(NCET-06-0799);四川省杰出青年基金项目(06ZQ026-012)~~

摘  要:传统的人工智能方法处理电网故障诊断中交叉数据模式识别问题的效果不甚理想。为此,作者提出运用量子神经网络进行故障诊断的算法,借鉴量子力学的相关概念,不断更新各层神经元的连接权以及隐含层各神经元的量子间隔,以达到提高故障诊断容错性的目的。仿真结果表明,在保护动作信息不完备的情况下,该算法的故障判断准确性明显优于传统神经网络。另外,该算法对存在一定错误数据的故障信息也具有良好的识别能力。When traditional artificial intelligence approaches are used to recognize the cross data pattern in the power grid fault diagnosis, its result is not ideal. For this reason, the authors propose a new fault diagnosis algorithm in which the conception of quantum neural network is adopted. In the proposed algorithm, the connection weights of neurons of various layers as well as the quantum intervals of neurons in hidden layers are constantly updated to attain the expected purpose of improve the fault toleration in power grid fault diagnosis. Simulation results show that under the condition of incomplete protection action information the accuracy of fault recognition by the proposed algorithm is better than those by traditional neural network methods. Otherwise, the proposed algorithm can also recognize such fault information in which certain incorrect data exists..

关 键 词:量子神经网络 故障诊断 激励函数 电力系统 

分 类 号:TM711[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象