检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟兆芳[1] 赵龙莲[2] 程奕[1] 陈秋生[1] 张玺[1] 范朝晖[1] 严衍禄[2]
机构地区:[1]天津市农业科学院中心实验室,天津300192 [2]中国农业大学信息与电气工程学院,北京100094
出 处:《华北农学报》2008年第2期147-150,共4页Acta Agriculturae Boreali-Sinica
基 金:天津市重大农业科技合作项目(03090)
摘 要:应用近红外光谱法(Near infrared spectroscopy,NIRS)和偏最小二乘法(Partial least squares,PLS)建立玉米粗蛋白质、粗脂肪和粗淀粉定量分析的近红外光谱数学模型,并对模型预测结果的准确性进行了评价。结果表明:近红外预测模型的内部交叉验证决定系数(R2cv)分别为:0.9778,0.9666和0.9927;交叉证实标准差(RMSECV)分别为:0.38,0.40和1.51;模型外部验证决定系数(Rv2al)分别为0.9391,0.9651和0.9875;外部验证标准差(RMSEP)为0.41,0.35和1.31。实际样品的常规分析结果得出玉米粗蛋白质、粗脂肪和粗淀粉的NIRS数学模型具有较高的预测准确性,可应用于玉米育种工作中的大批样品的品质分析。NIR models of crude protein, crude fat and crude starch in maize were built using Partial Least Squares (PLS), and the predictive veracity of these models were evaluated. The Rcv^2(coefficients of determinition for cross validation) for determining crude protein, fat and starch were 0. 977 8,0. 966 6 and 0. 992 7 respectively, as the RMSECV were 0.38,0.40 and 1.51. The R^2val(coefficients of determination for validation) were 0.939 1,0.965 1 and 0.987 5 .As RM- SEP are 0.41,0.35 and 1.31. Then, these models were all used to predict practical maize samples. Comparing with the true values from chemical analysis, the NIR models could predict veraciously. This result combined with the calibration results suggested that the NIR models we built could be used to a mass of sample analysis in maize breeding.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112