近红外光谱法测定玉米品质指标的研究  被引量:19

Study on Determination Several Quality Characteristics of Maize by Near Infrared Spectroscopy

在线阅读下载全文

作  者:孟兆芳[1] 赵龙莲[2] 程奕[1] 陈秋生[1] 张玺[1] 范朝晖[1] 严衍禄[2] 

机构地区:[1]天津市农业科学院中心实验室,天津300192 [2]中国农业大学信息与电气工程学院,北京100094

出  处:《华北农学报》2008年第2期147-150,共4页Acta Agriculturae Boreali-Sinica

基  金:天津市重大农业科技合作项目(03090)

摘  要:应用近红外光谱法(Near infrared spectroscopy,NIRS)和偏最小二乘法(Partial least squares,PLS)建立玉米粗蛋白质、粗脂肪和粗淀粉定量分析的近红外光谱数学模型,并对模型预测结果的准确性进行了评价。结果表明:近红外预测模型的内部交叉验证决定系数(R2cv)分别为:0.9778,0.9666和0.9927;交叉证实标准差(RMSECV)分别为:0.38,0.40和1.51;模型外部验证决定系数(Rv2al)分别为0.9391,0.9651和0.9875;外部验证标准差(RMSEP)为0.41,0.35和1.31。实际样品的常规分析结果得出玉米粗蛋白质、粗脂肪和粗淀粉的NIRS数学模型具有较高的预测准确性,可应用于玉米育种工作中的大批样品的品质分析。NIR models of crude protein, crude fat and crude starch in maize were built using Partial Least Squares (PLS), and the predictive veracity of these models were evaluated. The Rcv^2(coefficients of determinition for cross validation) for determining crude protein, fat and starch were 0. 977 8,0. 966 6 and 0. 992 7 respectively, as the RMSECV were 0.38,0.40 and 1.51. The R^2val(coefficients of determination for validation) were 0.939 1,0.965 1 and 0.987 5 .As RM- SEP are 0.41,0.35 and 1.31. Then, these models were all used to predict practical maize samples. Comparing with the true values from chemical analysis, the NIR models could predict veraciously. This result combined with the calibration results suggested that the NIR models we built could be used to a mass of sample analysis in maize breeding.

关 键 词:近红外光谱法 玉米 定标模型 粗蛋白质 粗脂肪 粗淀粉 

分 类 号:S513[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象