检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国惯性技术学报》2008年第2期162-166,共5页Journal of Chinese Inertial Technology
基 金:国防科技预研项目(51309060402);国家高技术研究发展计划项目(2007AA09Z201)
摘 要:克里金插值法是一种无偏、最优的插值方法,但普通克里金插值法要求区域化变量满足二阶平稳假设或是固有假设,但实际应用中这一假设往往无法满足,即存在漂移现象,由于地磁场数据存在有区域异常问题,因此是非平稳的,从而限制了克里金插值方法的应用。通过分析,泛克里金插值法可较好地估计和拟合地磁区域异常,因此可较好地解决地磁数据的插值问题。对地磁数据进行了泛克里金变异函数选取,并完成了地磁区域异常的二次多项式拟合。将克里金插值法和泛克里金插值法应用于地磁图插值处理,并利用交叉证实法验证,结果表明泛克里金法比普通克里金法具有更好的插值效果,得到的地磁图精度有提高。泛克里金插值法避开了克里金插值法的二阶平稳假设,使插值得到的地磁图更加符合地磁场特征。Kriging is an optimal and unbiased interpolation method. However, the local variables must meet the second order stability hypothesis or intrinsic hypothesis. Actually, it's hard to satisfy the hypothesis in the application because the drift exists. Since there are problems of zonal abnormity in geomagnetic data, the geomagnetic data are non-stationary, which restrict the application of Kriging interpolation. The paper chose Universal Kriging to estimate and fit the zonal abnormity, which solved the interpolation problem of geomagnetic data. The variogram of Universal Kriging was selected in geomagnetic data, and the second-degree polynomial fitting of geomagnetic zonal abnormity was achieved. The applications of universal Kriging and the ordinary Kriging in geomagnetic graphics were verified by cross-validation which show that the universal Kriging interpolation avoids the second-order stationary hypothesis, and the geomagnetic-map can get higher precision and be more close to the geomagnetic character.
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.225.144