全矩阵空间保矩阵逆的加法映射  被引量:2

Additive maps preserving matric inverse between matric spaces over fields

在线阅读下载全文

作  者:姚红梅[1] 曹重光[2] 

机构地区:[1]哈尔滨工程大学理学院,哈尔滨150001 [2]黑龙江大学数学科学学院,哈尔滨150080

出  处:《黑龙江大学自然科学学报》2008年第2期225-228,共4页Journal of Natural Science of Heilongjiang University

基  金:国家自然科学基金资助项目(10671026)

摘  要:设F是一个特征不为2及3的域,Mn(F)表示F上n×n矩阵全体,GLn(F)记F上一般线性群,N-1(F)表示从Mn(F)到Mm(F)的保矩阵逆的全部加法映射的集合。以矩阵逆作为不变量,研究不同矩阵空间上加法保持映射的形式,并采用直接刻画基底的矩阵逆保持算子形式的办法,刻画了N-1(F)中元素的形式。从结果可看出当n=2时的映射形式要比n≥3时的映射形式复杂得多。Suppose F is a field of characteristic not 2 or 3, denote by Mn (F) the space of all n × n full matrices over F, by GLn(F) the general linear group on F. Let N-1 (F) be the set of all additive maps which preserves matrix inverse from Mn (F) to Mm (F) . For the invariant-matrix inverse, the forms of additive maps preserving matrix inverse between different matrix spaces are characterized. The form of element in the set N_ 1 (F) is described. From the result, it is seen that the case of n =2 is more complicated than the case of n≥3.

关 键 词: 特征 加法保持 矩阵逆 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象